Enzymatic hydrolysis of eucalyptus biomass for bioethanol production: a bibliometric analysis

Renan Amorim Margon, Laura Marina Pinotti, Rodrigo Randow Freitas


The energy matrix in the Brazilian and world scenarios has undergone significant changes during the last decades. Due to oscillations in the price of the oil barrel and its derivatives, the study of alternative energies has been intensifying. In this context, the production of second generation bioethanol has been considered as a way to meet this demand. Besides being able to partially solve the dependence of the use of fossil fuels, this technology stands out for utilizing lignocellulosic industries residues, adding value to this material. This article consists of a bibliometric review of this application, giving an overview of the advances made to date. A quantitative analysis of the articles found in the Web of Science database was carried out, followed by a qualitative analysis. Subsequently, the convergences and divergences between the articles were identified. The results demonstrate that some improvements are still needed in the process, however the technique is feasible and advantageous in the production of bioethanol.


Enzymatic hydrolysis; Eucalyptus; Pretreatment; Bioethanol; Bibliometrics.


ALBORNOZ, C. et al. Coupled saccharification and fermentation of pretreated eucalyptus wood - A simple kinetic-model. World Journal of Microbiology & Biotechnology, v. 9, n. 3, p. 313-318, 1993.

AREA, M. C.; POPA, V. I. Wood Fibres for Papermaking. Shrewsbury: Smithers Rapra. 2014.

BALAT, M. Production of bioethanol from lignocellulosic materials via the biochemical pathway: A review. Energy Conversion and Management, v. 52, n. 2, p. 858-875, 2011.

BARBETTA, P. A. Estatística Aplicada Às Ciências Sociais. 7ª Ed. Florianópolis: Editora UFSC. 2007.

BINOD, P. et al. Bioethanol production from rice straw: An overview. Bioresource Technology, v. 101, n. 13, p. 4767-4774, 2010.

CARDONA, C. A.; QUINTERO, J. A.; PAZ, I. C. Production of bioethanol from sugarcane bagasse: Status and perspectives. Bioresource Technology, v. 101, n. 13, p. 4754-4766, 2010.

CHEN, C.; HU, Z.; LIU, S.; TSENG, H. Emerging trends in regenerative medicine: a scientometric analysis in CiteSpace. Expert Opinion On Biological Therapy, v. 12, n. 5, p. 593-608, 2012.

COSTA, C. C.; BURNQUIST, H. L. Impactos do controle do preço da gasolina sobre o etanol biocombustível no Brasil. Estudos Econômicos. São Paulo, v. 46, n. 4, p. 1003-1028, 2016.

DE CARVALHO, D. M. et al. Assessment of chemical transformations in eucalyptus, sugarcane bagasse and straw during hydrothermal, dilute acid, and alkaline pretreatments. Industrial Crops and Products, v. 73, p. 118-126, 2015.

FU, C. X. et al. Genetic manipulation of lignin reduces recalcitrance and improves ethanol production from switchgrass. Proceedings of the National Academy of Sciences of the United States of America, v. 108, n. 9, p. 3803-3808, 2011.

GOMES, I. S.; CAMINHA, I. O. Guia para estudos de revisão sistemática: uma opção metodológica para as Ciências do Movimento Humano. Movimento, Porto Alegre, v. 20, n. 01, p. 395-411, 2014.

GONZALEZ, R. et al. Converting Eucalyptus biomass into ethanol: Financial and sensitivity analysis in a co-current dilute acid process. Part II. Biomass & Bioenergy, v. 35, n. 2, p. 767-772, 2011.

IGARASHI, K. et al. Traffic Jams Reduce Hydrolytic Efficiency of Cellulase on Cellulose Surface. Science, v. 333, n. 6047, p. 1279-1282, 2011.

INDÚSTRIA BRASILEIRA DE ÁRVORES. Relatório Anual Ibá 2017. Brasília: Indústria Brasileira de Árvores, 2017. Disponível em: . Acesso em: 02 jan. 2018.

LACERDA, R. T. O.; ENSSLIN, L.; ENSSLIN, S. R. Uma análise bibliométrica da literatura sobre estratégia e avaliação de desempenho. Gestão & Produção, v. 19, n. 1, 2012.

LEVINSON, H. S.; REESE, E. T. Enzymatic hydrolysis of soluble cellulose derivatives as measured by changes in viscosity. Journal of General Physiology, v. 33, n. 5, p. 601-628, 1950.

LEVINSON, H. S.; MENDELS, G. R.; REESE, E. T. Products of enzymatic hydrolysis of cellulose and its derivatives. Archives of Biochemistry and Biophysics, v. 31, n. 3, p. 351-365, 1951.

LI, C. L.; SUN, L.; SIMMONS, B. A.; SINGH, S. Comparing the Recalcitrance of Eucalyptus, Pine, and Switchgrass Using Ionic Liquid and Dilute Acid Pretreatments. Bioenergy Research, v. 6, n. 1, p. 14-23, 2013.

LIMA, M. A. et al. Effects of pretreatment on morphology, chemical composition and enzymatic digestibility of eucalyptus bark: a potentially valuable source of fermentable sugars for biofuel production - part 1. Biotechnology for Biofuels, v. 6, n. 75, 2013.

LIMA, M. S. O.; REBELATTO, D. A. N.; SAVI, E. M. S. O papel das fontes renováveis de energia na mitigação da mudança climática. In: XIII Simpósio de Engenharia de Produção. Anais... Bauru: UNESP, 2006.

MCINTOSH, S.; VANCOV, T.; PALMER, J.; SPAIN, M. Ethanol production from Eucalyptus plantation thinnings. Bioresource Technology, v. 110, p. 264-272, 2012.

MEDINA, E. U.; PAILAQUILÉN, R. M. B. A revisão sistemática e a sua relação com a prática baseada na evidência em saúde. Revista Latino-Americana de Enfermagem: Ribeirão Preto, v. 18, n. 4, p. 1- 8 2010.

MINISTÉRIO DE MINAS E ENERGIA. Resenha Energética Brasileira: exercício de 2016. Brasília: Secretaria de Planejamento e Desenvolvimento Energético, 2017. Disponível em: . Acesso em: 02 jan. 2018.

PARK, S. et al. Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnology for Biofuels, v. 3, n. 10, 2010.

PEREIRA JÚNIOR, N.; COUTO, M. A. P. G.; SANTA ANNA, L. M. M. Biomass of lignocellulosic composition for fuel ethanol production and the context of biorefinery. In: Series on Biotechnology. Rio de Janeiro: Amiga Digital UFRJ, Volume 2, 2008.

PITARELO, A. P.; SILVA, T. A.; PERALTA-ZAMORA, P. G.; RAMOS, L. P. Efeito do teor de umidade sobre o pré-tratamento a vapor e a hidrólise enzimática do bagaço de cana-de-açúcar. Química Nova, v. 35, n. 8, p. 1-8, 2012.

QING, Q.; YANG, B.; WYMAN, C. E. Xylooligomers are strong inhibitors of cellulose hydrolysis by enzymes. Bioresource Technology, v. 101, n. 24, p. 9624-9630, 2010.

RICO, A. et al. Pretreatment with laccase and a phenolic mediator degrades lignin and enhances saccharification of Eucalyptus feedstock. Biotechnology for Biofuels, v. 7, n. 6, 2014.

ROMANI, A.; GARROTE, G.; ALONSO, J. L.; PARAJO, J. C. Bioethanol production from hydrothermally pretreated Eucalyptus globulus wood. Bioresource Technology, v. 101, n. 22, p. 8706-8712, 2010a.

ROMANI, A.; GARROTE, G.; ALONSO, J. L.; PARAJO, J. C. Experimental Assessment on the Enzymatic Hydrolysis of Hydrothermally Pretreated Eucalyptus globulus Wood. Industrial & Engineering Chemistry Research, v. 49, n. 10, p. 4653-4663, 2010b.

ROMANI, A.; GARROTE, G.; LOPEZ, F.; PARAJO, J. C. Eucalyptus globulus wood fractionation by autohydrolysis and organosolv delignification. Bioresource Technology, v. 102, n. 10, p. 5896-5904, 2011.

ROMANI, A.; GARROTE, G.; PARAJO, J. C. Bioethanol production from autohydrolyzed Eucalyptus globulus by Simultaneous Saccharification and Fermentation operating at high solids loading. Fuel, v. 94, n. 1, p. 305-312, 2012.

ROMANI, A.; GARROTE, G.; BALLESTEROS, I.; BALLESTEROS, M. Second generation bioethanol from steam exploded Eucalyptus globulus wood. Fuel, v. 111, p. 66-74, 2013.

SILVEIRA, H. SWOT. In: Inteligência Organizacional e Competitiva. Org. TARAPANOFF, K. Brasília: Editora UNB. 2001.

STUDER, M. H. et al. Lignin content in natural Populus variants affects sugar release. Proceedings of the National Academy of Sciences of the United States of America, v.108, n. 15, p. 6300-6305, 2011.

SUN, Y. C.; XU, J. K.; XU, F.; SUN, R. C. Structural comparison and enhanced enzymatic hydrolysis of eucalyptus cellulose via pretreatment with different ionic liquids and catalysts. Process Biochemistry, v. 48, n. 5-6, p. 844-852, 2013.

TALEBNIA, F.; KARAKASHEV, D.; ANGELIDAKI, I. Production of bioethanol from wheat straw: An overview on pretreatment, hydrolysis and fermentation. Bioresource Technology, v. 101, n. 13, p. 4744-4753, 2010.

WEI, W. Q.; WU, S. B.; LIU, L. G. Enzymatic saccharification of dilute acid pretreated eucalyptus chips for fermentable sugar production. Bioresource Technology, v. 110, p. 302-307, 2012.

WEI, W. Q.; WU, S. B.; LIU, L. G. Combination of liquid hot water pretreatment and wet disk milling to improve the efficiency of the enzymatic hydrolysis of eucalyptus. Bioresource Technology, v. 128, p. 725-730, 2013.

YAOYANG, X.; BOEING, W.J. Mapping biofuel field: a bibliometric evaluation of research output. Renewable and Sustainable Energy Reviews, v. 28, p. 82-91, 2013.

YU, Q. et al. Two-step liquid hot water pretreatment of Eucalyptus grandis to enhance sugar recovery and enzymatic digestibility of cellulose. Bioresource Technology, v. 101, n. 13, p. 4895-4899, 2010.

ZHU, J. Y.; PAN, X. J. Woody biomass pretreatment for cellulosic ethanol production: Technology and energy consumption evaluation. Bioresource Technology, v. 101, n. 13, p. 4992-5002, 2010.

DOI: http://dx.doi.org/10.17648/rsd-v7i4.301


  • There are currently no refbacks.

Base de Dados e Indexadores: BaseDiadorimSumarios.orgDOI CrossrefDialnetScholar GoogleRedibDoajLatindex, Portal de Periódicos CAPES

Research, Society and Development - ISSN 2525-3409

Licença Creative Commons
Este obra está licenciado com uma Licença Creative Commons Atribuição 4.0 Internacional

Rua Irmã Ivone Drumond, 200 - Distrito Industrial II, Itabira - MG, 35903-087 (Brasil) | UDE – Universidad de la Empresa – Sede Centro Dir: Soriano 959, Montevidéu (Uruguay)
E-mail: rsd.articles@gmail.com
Facebook: https://www.facebook.com/Research-Society-and-Development-563420457493356