Thermosensitive membranes based in semi-interpenetrating polymer network of Chitosan and Poly(N-isopropylacrylamide)

Luana Aparecida Silvestre Braga, Alexandre Flauzino Junior, Maria Elena Leyva González, Alvaro Antonio Alencar de Queiroz

Abstract


The present study aims to develop thermosensitive membranes with an intelligent mechanism of adhesion/release and potent antimicrobial action for the treatment of wounds. The membranes were prepared by electrosynthesis of the thermosensitive hydrogel poly (N-isopropylacrylamide) (PNIPAm) in the presence of chitosan (CHI). The material obtained is constituted by a semi-interpenetrating polymer network (sIPN) of CHI and PNIPAm. The chitosan is a natural biopolymer with activity bactericidal, anti-inflammatory and healing action. The commercial chitosan used was previously characterized in terms of its average molar mass (0.9312 * 105 g mol-1) by viscosimetric method and degree of deacetylation (86.23%), through conductometric titration. The PNIPAm hydrogel was incorporated to CHI polymer chain by electrochemical method using cyclic voltammetry technique. The sIPN CHI-PNIPAm membrane obtained was characterized by Fourier Transform Infrared Spectroscopy using the Attenuated Total Reflectance (FTIR-ATR), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). FTIR-ATR spectra confirmed the polymerization of PNIPAm in the presence of CHI. TGA curve showed that sIPN membrane obtained has a composition of 33% chitosan and 55% PNIPAm. DSC thermal analysis showed a lower Tg of sIPN CHI-PNIPAm membrane compared to Tg of PNIPAm hydrogel. The phase transition temperature (LCST) of the sIPN CHI-PNIPAm membrane was determined by Ultaviolet-visible spectroscopy (UV-vis) the value found was 32 ° C.


Keywords


Chitosan; Poly-N-isopropylacrylamide; Electrosynthesis; Thermosensitive membranes.

References


AZEVEDO, V. V. C.; et al. Quitina e Quitosana: aplicações como biomateriais. Revista Eletrônica de Materiais e Processos, v. 2.3, p. 27-34, 2007. Disponível em . Acesso em 22 nov. 2017.

BOXIANG, W.; et al., Thermosensitive Behavior and Antibacterial Activity of Cotton Fabric Modified with a Chitosan-poly(N-isopropylacrylamide) Interpenetrating Polymer Network Hydrogel. Polymers, v. 8, n. 110, p. 2-11, 2016.

DERAKHSHANDEH, H.; et al. Trends in Biotechnology, In press, corrected proof. Disponível em . Acesso em 10 nov. 2018.

DEKA, S. R.; et al. Magnetic nanobeads decorated by thermo-responsive PNIPAM shell as medical platforms for the efficient delivery of doxorubicin to tumour cells. Nanoscale, v. 3, p. 619-629, 2011.

FERNANDES, L. E.; et al. Caracterização de Polímeros. E-papers Serviços Editoriais Ltda., Rio de Janeiro, 2013, p. 126-149.

HEYU, L.; et al. Thermosensitive nanofibers loaded with ciprofloxacin as antibacterial wound dressing materials. International Journal of Pharmaceutics, v. 517, p. 135-147, 2017.

HONGQIAN, B.; et al. Thermo-Responsive Association of CS-g-PNIPAM. Journal Physics Chemistry B, v. 114, n. 32, p. 10666-10673, 2010.

LARANJEIRA, M. C. M.; FÁVARE, V. T. Quitosana: biopolímero funcional com potencial industrial biomédico. Química Nova, Florianópolis, v. 32, n. 3, p. 672-678, 2009.

MA, X. M. Restorable, high-strength poly(N-isopropylacrylamide) hydrogels constructed through chitosan-based dual macro-cross-linkers with rapid response to temperature jumps. Royal Society of Chemistry Advances, v. 7, p. 47767-47774, 2017.

MARQUES, N. N.; et al. Development of dual-sensitive smart polymers by grafting chitosan with poly(N-isopropylacrylamide): an overview. Polímeros, v. 25, n. 3, p. 237-246, 2015.

MINGZHEN, W.; et al. Preparation and properties of chitosan-poly(N-isopropylacrylamide) full-IPN hydrogels. Reactive & Functional Polymers, v. 48, p. 215-221, 2001.

RAHMAN, N. A.; et al. Modification of Chitosan for Preparation of Poly(N-isopropylacrylamide/O-nitrochitosan) Interpenetrating Polymer Network. Sains Malaysiana, v. 44, n. 7, p. 995-1001, 2015.

SANTOS, J. E. dos; et al. Caracterização de Quitosanas Comerciais de Diferentes Origens. Polímeros: Ciência e Tecnologia, v. 13, n. 4, p. 242-249, 2003.

SWEIDAN K.; et al. Further investigation on the degree of deacetylation of chitosan determined by potentiometric titration. Journal Excipients and Food Chem, v. 2, n. 1, p. 16-25, 2011.

TAVARIA, F. K.; et al. A quitosana como biomaterial odontológico: estado da arte. Revista Brasileira de Engenharia Biomédica, v. 29, n. 1, p. 110-120, 2013.




DOI: http://dx.doi.org/10.33448/rsd-v8i3.748

Refbacks

  • There are currently no refbacks.


Base de Dados e Indexadores: BaseDiadorimSumarios.orgDOI CrossrefDialnetScholar GoogleRedibDoajLatindex, Portal de Periódicos CAPES

Research, Society and Development - ISSN 2525-3409

Licença Creative Commons
Este obra está licenciado com uma Licença Creative Commons Atribuição 4.0 Internacional

Rua Irmã Ivone Drumond, 200 - Distrito Industrial II, Itabira - MG, 35903-087 (Brasil) | UDE – Universidad de la Empresa – Sede Centro Dir: Soriano 959, Montevidéu (Uruguay)
E-mail: rsd.articles@gmail.com
Facebook: https://www.facebook.com/Research-Society-and-Development-563420457493356