Bioactive potential of moringa seeds (Moringa oleifera Lamarck) after solid-state fermentation process

Paula Ribeiro Buarque Feitosa, Tacila Rayane Jericó Santos, Nayjara Carvalho Gualberto, Narendra Narain, Luciana Cristina Lins de Aquino Santana


The present study aimed to evaluate the content of bioactive compounds in moringa seed flour, with an initial humidity of 50% or 70%, after the solid state fermentation process using Aspergillus niger. Extracts of fermented and unfermented moringa seed flour were obtained using distilled water, 40% and 80% ethanol, 40% and 80% acetone and the contents of phenolic compounds and total flavonoids were determined. Antioxidant (by DPPH, ABTS and FRAP) and antimicrobial activities were determined for extracts with greater increases in phenolic compounds and total flavonoids after fermentation. The phenolic compounds were quantified by high performance liquid chromatography. The greatest increase in phenolics (395.4%) in relation to unfermented flour was obtained in extract A40% (IU = 70%) fermented for 168 hours and the highest in total flavonoids (273.7%) was in the extract in E80% (UI = 50%) fermented for 168 hours. The extracts in A80% of the unfermented flour and the fermented flour (IU = 70%) for 72 hours showed greater AA by the DPPH method. The fermented extracts showed an inhibitory potential against the bacteria B. subtilis, S. aureus and S. marcescens, while no bacteria were sensitive to non-fermented extracts. Fermented extracts demonstrated higher concentrations of the compounds epicatechin, epicatechin gallate, ethyl gallate and epigallocatechin and the presence of undetected epigallocatechin gallate in the extracts of unfermented. The FES associated with extraction with organic solvents demonstrated efficiency in obtaining extracts from the flour of moringa seeds with improved bioactive potential.


Agro-industrial waste; Biotechnology; Bioactive compounds


Ajila, C. M., Brar, S. K., Verma, M., Tyagi, R. D., & Valéro, J. R. (2011). Solid-state fermentation of apple pomace using Phanerocheate chrysosporium - Liberation and extraction of phenolic antioxidants. Food Chemistry, 126(3), 1071–1080.

Al-Juhaimi, F. Y., Alsawmahi, O. N., Abdoun, K. A., Ghafoor, K., & Babiker, E. E. (2019). Antioxidant potential of Moringa leaves for improvement of milk and serum quality of Aardi goats. South African Journal of Botany, 3–6.

Andrade, J. K. S., Denadai, M., de Oliveira, C. S., Nunes, M. L., & Narain, N. (2017). Evaluation of bioactive compounds potential and antioxidant activity of brown, green and red propolis from Brazilian northeast region. Food Research International, 101(July), 129–138.

Azam, S., Nouman, W., Rehman, U., Ahmed, U., Gull, T., & Shaheen, M. (2019). Adaptability of Moringa oleifera Lam. under different water holding capacities. South African Journal of Botany, 10–14.

Ben Salem, H., & Makkar, H. P. S. (2009). Defatted Moringa oleifera seed meal as a feed additive for sheep. Animal Feed Science and Technology, 150(1–2), 27–33.

Camargo Prado, F., De Dea Lindner, J., Inaba, J., Thomaz-Soccol, V., Kaur Brar, S., & Soccol, C. R. (2015). Development and evaluation of a fermented coconut water beverage with potential health benefits. Journal of Functional Foods, 12, 489–497.

CLSI. (2015). Padronização dos Testes de Sensibilidade a Antimicrobianos por Disco-difusão : Norma Aprovada – Oitava Edição (Vol. 23).

Coelho, M. A. Z., Leite, S. G. F., Rosa, M. D. F., & Furtado, A. A. L. (2001). Aproveitamento De Resíduos Agroindustriais: Produção De Enzimas a Partir Da Casca De Coco Verde. Boletim Do Centro de Pesquisa de Processamento de Alimentos, 19(1), 33–42.

Cooper, R., Ph, D., Morré, D. J., Morré, D. M., & Al, C. E. T. (2005). Medicinal benefits of green tea: Part II. The Journal of Alternative and Complementary Medicine, 11(4), 639–652.

da S. Pereira, A., Fontes-Sant’Ana, G. C., & Amaral, P. F. F. (2019). Mango agro-industrial wastes for lipase production from Yarrowia lipolytica and the potential of the fermented solid as a biocatalyst. Food and Bioproducts Processing, 115, 68–77.

Dewanto, V., Xianzhong, W., Adom, K. K., & Liu, R. H. (2002). Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. Journal of Agricultural and Food Chemistry, 50(10), 3010–3014.

Dulf, F. V., Vodnar, D. C., & Socaciu, C. (2016). Effects of solid-state fermentation with two filamentous fungi on the total phenolic contents, flavonoids, antioxidant activities and lipid fractions of plum fruit (Prunus domestica L.) by-products. Food Chemistry, 209, 27–36.

Evacuasiany, E., Ratnawati, H., Liana, L., Widowati, W., Maesaroh, M., Mozef, T., & Risdian, C. (2014). Cytotoxic and antioxidant activities of catechins in inhibiting the malignancy of breast cancer. Oxidants and Antioxidants in Medical Science, 3(2), 141.

Friedman, M., Henika, P. R., Levin, C. E., Mandrell, R. E., & Kozukue, N. (2006). Antimicrobial activities of tea catechins and theaflavins and tea extracts against Bacillus cereus. Journal of Food Protection, 69(2), 354–361.

Fuglie, L. J. (1999). The Miracle Tree: Moringa oleifera: Natural Nutrition for the Tropics. Church World Service.

Gomes, W. F., França, F. R. M., Denadai, M., Andrade, J. K. S., da Silva Oliveira, E. M., de Brito, E. S., … Narain, N. (2018). Effect of freeze- and spray-drying on physico-chemical characteristics, phenolic compounds and antioxidant activity of papaya pulp. Journal of Food Science and Technology, 55(6), 2095–2102.

Ijarotimi, O. S., Adeoti, O. A., & Ariyo, O. (2013). Comparative study on nutrient composition, phytochemical, and functional characteristics of raw, germinated, and fermented Moringa oleifera seed flour . Food Science & Nutrition, 1(6), 452–463.

Makita, C., Chimuka, L., Steenkamp, P., Cukrowska, E., & Madala, E. (2016). Comparative analyses of flavonoid content in Moringa oleifera and Moringa ovalifolia with the aid of UHPLC-qTOF-MS fingerprinting. South African Journal of Botany, 105, 116–122.

Martins, S., Mussatto, S. I., Martínez-Avila, G., Montañez-Saenz, J., Aguilar, C. N., & Teixeira, J. A. (2011). Bioactive phenolic compounds: Production and extraction by solid-state fermentation. A review. Biotechnology Advances, 29(3), 365–373.

Nenadis, N., Wang, L. F., Tsimidou, M., & Zhang, H. Y. (2004). Estimation of scavenging activity of phenolic compounds using the ABTS .+ assay. Journal of Agricultural and Food Chemistry, 52(15), 4669–4674.

Pereira, A. S., Shitsuka, Dorlivete Moreira Parreira, F. J., & Shitsuka, R. (2018). Metodologia da Pesquisa Científica - Licenciatura em Computação.

Ponce, A. G., Fritz, R., Del Valle, C., & Roura, S. I. (2003). Antimicrobial activity of essential oils on the native microflora of organic Swiss chard. LWT - Food Science and Technology, 36(7), 679–684.

Rice-evans, C. A., Miller, N. J., Bolwell, P. G., Bramley, P. M., & Pridham, J. B. (1995). The relative antioxidant activities of plant-derived polyphenolic flavonoids. Free Radical Research, 22(4), 375–383.

Saucedo-Pompa, S., Torres-Castillo, J. A., Castro-López, C., Rojas, R., Sánchez-Alejo, E. J., Ngangyo-Heya, M., & Martínez-Ávila, G. C. G. (2018). Moringa plants: Bioactive compounds and promising applications in food products. Food Research International, 111(2017), 438–450.

Shetty, K., Curtis, O. F., Levin, R. E., Witkowsky, R., & Ang, W. (1995). Prevention of Vitrification Aßociated with in vitro Shoot Culture of Oregano. (Origanum vulgare) by Pseudomonas spp. Journal of Plant Physiology, 147(3–4), 447–451.

Tachibana, H. (2009). Molecular basis for cancer chemoprevention by green tea polyphenol EGCG. Forum of Nutrition, 61, 156–169.

Thaipong, K., Boonprakob, U., Crosby, K., Cisneros-Zevallos, L., & Hawkins Byrne, D. (2006). Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. Journal of Food Composition and Analysis, 19(6–7), 669–675.

Valvi, S. R., Rathod, V. S., & Yesane, D. P. (2011). Screening of three wild edible fruits for their antioxidant potential. Current Botany, 2(1), 48–52.

Vattem, D. A., & Shetty, K. (2003). Ellagic acid production and phenolic antioxidant activity in cranberry pomace (Vaccinium macrocarpon) mediated by Lentinus edodes using a solid-state system. Process Biochemistry, 39(3), 367–379.

Veana, F., Martínez-Hernández, J. L., Aguilar, C. N., Rodríguez-Herrera, R., & Michelena, G. (2014). Utilization of molasses and sugar cane bagasse for production of fungal invertase in solid state fermentation using Aspergillus niger GH1. Brazilian Journal of Microbiology, 45(2), 373–377.

Wong-Paz, J. E., Contreras-Esquivel, J. C., Rodríguez-Herrera, R., Carrillo-Inungaray, M. L., López, L. I., Nevárez-Moorillón, G. V., & Aguilar, C. N. (2015). Total phenolic content, in vitro antioxidant activity and chemical composition of plant extracts from semiarid Mexican region. Asian Pacific Journal of Tropical Medicine, 8(2), 104–111.



  • There are currently no refbacks.

Base de Dados e Indexadores: Base, Diadorim,, DOI Crossref, Dialnet, Scholar Google, Redib, Doaj, Latindex, Portal de Periódicos CAPES

Research, Society and Development - ISSN 2525-3409

Licença Creative Commons
Este obra está licenciado com uma Licença Creative Commons Atribuição 4.0 Internacional

Rua Irmã Ivone Drumond, 200 - Distrito Industrial II, Itabira - MG, 35903-087 (Brasil)