Melon seed drying kinetics described by a diffusion model

Raphael Lucas Jacinto Almeida, Newton Carlos Santos, Tamires dos Santos Pereira, Virginia Mirtes de Alcântara Silva, Victor Herbert de Alcântara Ribeiro, Lucas Rodolfo Inácio da Silva, Fellype Diorgennes Cordeiro Gomes, Flávia Izabely Nunes Moreira, Soares Elias Rodrigues Lima, Raphael da Silva Eduardo

Abstract


The present work aimed to perform the drying kinetics of melon seeds at different drying temperatures and to adjust the diffusion model to the experimental data considering the geometry of an infinite cylinder. The drying was carried out in an air circulation oven at temperatures of 50, 60 and 70 ºC and with an air speed of 1.5 m s-1, based on the data obtained and considering the melon seeds with infinite cylinder geometry. The parameters were calculated by the analytical solution using the diffusion equation. The coefficient of determination showed values above 0.99 and low values of the chi-square function, indicating that the diffusion model presented satisfactory adjustment to the experimental data of the drying kinetics of melon seeds. According to the data obtained in the drying kinetics of melon seeds, it was seen that the effective diffusivity, the heat transfer coefficient and the Biot number showed a strong positive correlation, indicating that the temperature increase was directly proportional to the values of the parameters calculated diffusion rates. The increase in temperature favors mass transfer, decreasing the dynamic equilibrium humidity and drying time, which varied from 1020, 940 and 880 minutes to temperatures of 50, 60 and 70 °C, it appears that for the longest interval greater time variations were the humidity variations inside the seed.


Keywords


Mathematical modeling; Infinite cylinder; Conservation; Pearson's correlation.

References


Aguiar, B. D. M., Vida, J. B., Tessmann, D. J., Oliveira, R. R. D., Aguiar, R. L., Alves, T. C. A., 2012. Fungal species that cause powdery mildew in greenhouse-grown cucumber and melon in Paraná State, Brazil. Acta Sci. Agron. 34 (3), 247–252.

Almeida, R. L. J., Santos, N. C, Silva, V. M. A., Ribeiro, V. H. A., Barros, E. R., Cavalcanti, J., Queiroga, A., Luíz, M. R., Nascimento, A., & Nunes, J. (2020). Influência da espessura na cinética de secagem de fatias de beterraba. Research, Society and Development, 9(3).

Alves, R. A., Queiroz, A. J. D. M., de Figueirêdo, R. M., Silva, W. P. D., & Gomes, J. P. (2019). Secagem solar de feijão-caupi combinada com secagem em secador acumulador de calor. Revista Brasileira de Engenharia Agrícola e Ambiental, 23(9), 709-715.

Araujo, W. D., Goneli, A. L. D., Corrêa, P. C., Hartmann Filho, C. P., & Martins, E. A. S. (2017). Modelagem matemática da secagem dos frutos de amendoim em camada delgada. Revista Ciência Agronômica, 48(3), 448-457.

Bennett, A. J., Bending, G. D., Chandler, D., Hilton, S., & Mills, P. (2012). Meeting the demand for crop production: the challenge of yield decline in crops grown in short rotations. Biological Reviews, 87(1), 52-71.

Borges, F. B. (2016). Descrição da secagem convectiva de grãos de milho através de modelos difusivos. 147p. Tese (Doutorado em Engenharia de Processos) – Universidade Federal de Campina Grande, Campina Grande –PB.

Brasil. Instituto Adolfo Lutz. (2008). Métodos físico-químicos para análise de alimentos. 4ª ed. 1ª ed. Dgital, São Paulo, p.1020.

Calixto, R. R., Pinheiro-Neto, L. G., Calvacante, T. S., Aragão, M. F., Silva, E. O. (2019). A computer vision model development for size and weight estimation of yellow melon

in the Brazilian northeast. Sci. Hortic. 256, 108521.

Crank, J. (1992). The Mathematics of Diffusion. Clarendon Press, Oxford, UK.

Da Silva, W. P., Precker, J. W., Silva, C. M. D. P. S., & Gomes, J. P. (2010). Determination of effective diffusivity and convective mass transfer coefficient for cylindrical solids via analytical solution and inverse method: Application to the drying of rough rice. Journal of Food Engineering, 98(3), 302–308.

FAO, F. (2016). Agriculture Organization, 2014. Livestock Primary. Food and Agriculture Organization of the United Nations.

Ferreira, J. P. D. L., Castro, D. S. D., Moreira, I. D. S., Silva, W. P. D., de Figueirêdo, R. M., & Queiroz, A. J. D. M. (2020). Cinética de secagem convectiva de cubos de mamão pré-tratados osmoticamente. Revista Brasileira de Engenharia Agrícola e Ambiental, 24(3), 200-208.

Giwa, S., Abdullah, L. C., & Adam, N. M. (2010). Investigating “Egusi”(Citrullus colocynthis L.) seed oil as potential biodiesel feedstock. Energies, 3(4), 607-618.

Huang, Y., Li, W., Zhao, L., Shen, T., Sun, J., Chen, H., Kong, Q., Nawaz, M.A., & Bie, Z. (2017). Melon fruit sugar and amino acid contents are affected by fruit setting method under protected cultivation. Sci. Hortic-Amsterdam, 214, 288–294.

Jarret, R. L., & Levy, I. J. (2012). Oil and fatty acid contents in seed of Citrullus lanatus Schrad. Journal of agricultural and food chemistry, 60(20), 5199-5204.

Kaya, A., Aydın, O., & Dincer, I. (2010). Comparison of experimental data with results of some drying models for regularly shaped products. Heat and mass transfer, 46(5), 555-562.

Kotowski, F. (1962). Temperature relations to germination of vegetable seeds. Proceedings of the American Society for Horticultural Science, 23, 176–184.

Luikov, A. V. (1968). Analytical Heat Diffusion Theory. Academic Press, Inc., Ltd., London.

Nyakuma, B. B., Roozbahani, F., Oladokun, O., Dodo, Y. A., Elnafaty, A. S., & Ivase, T. J. P. (2018). Kinetic Analysis of Melon Seed Husk Using Non-Isothermal Thermogravimetric Analysis. Materials Today: Proceedings, 5(11), 23249-23257.

Ogbe, A., & George, G. (2012). Nutritional and anti-nutrient composition of melon husks: Potential as feed ingredient in poultry diet. Research Journal of Chemical Sciences, 2231, 606X.

Oluba, O. M., Eidangbe, G. O., Ojieh, G. C., & Idonije, B. O. (2011). Palm and Egusi melon oils lower serum and liver lipid profile and improve antioxidant activity in rats fed a high fat diet. International Journal of Medicine and Medical Sciences, 3(2), 47-51.

Ornellas, F. L. S., de Sousa, A. O., Pirovani, C. P., do Nascimento Araújo, M., da Costa, D. S., Dantas, B. F., & Barbosa, R. M. (2020). Gene expression, biochemical and physiological activities in evaluating melon seed vigor through ethanol release. Scientia Horticulturae, 261, 108884.

Ribeiro, V. H. A., Almeida, R. L. J., Santos, N. C., Barros S. L., & Nascimento, A. P. S. (2019). Mathematical modeling of apple drying kinetics. Higiene Alimentar, 33(288/289), 3474-3478.

Saberali, S. F., & Shirmohamadi-Aliakbarkhani, Z. (2020). Quantifying seed germination response of melon (Cucumis melo L.) to temperature and water potential: Thermal time, hydrotime and hydrothermal time models. South African Journal of Botany, 130, 240-249.

Santos, N. C, Silva, W. P., Barros, S. L., Araújo, A. J. B., Gomes, J. P., Almeida, R. L. J., Nascimento, A. P. S., Almeida, R. D., Silva, C. M. P. D. S., Queiroz, A. J. M., & Figueirêdo, R. M. F. (2019). Study on Drying of Black Rice (Oryza sativa L.) Grains: Physical-Chemical and Bioactive Quality. Journal of Agricultural Science, 11(9), 203-212.

Santos, N. C., Almeida, R. L. J., Silva, L., Muniz, C., Pereira, T., Silva, V., Ribeiro, V., Moreira, F., Pinheiro, W., & Eduardo, R. (2020). Determinação dos parâmetros cinéticos durante o processo de secagem da casca de abacaxi. Research, Society and Development, 9(4).

Silva, I. L., Silva, H. W. D., de Camargo, F. R., de Farias, H. F., & Freitas, E. D. F. (2018). Secagem e difusividade de sementes de melão. Revista de Ciências Agrárias, 41(2), 21-30.

Silva, V. M. A., Ribeiro, V. H. A., Santos, N. C., Barros, S. L., Nascimento, A. P. S., & Araújo, A. J. B. (2019a). Determinação de modelo matemático na secagem do sorgo (sorghum bicolor (L.) moench). Caderno de Ciência, Pesquisa e Inovação, 2(1), 112-120.

Silva, V. M. A., Santos, N. C., Barros, S. L., Almeida, R. L. J., Ribeiro, V, H. A., & Melo, M. O. P. (2019b). Conservação de sementes de abóbora através de secagem convective. Caderno Verde de Agroecologia e Desenvolvimento Sustentável, 9(7), e-7098.

Thompson, P. A. (1974). Characterization of germination responses to temperature of vegetable seeds. I. Tomatoes. Scientia Horticulturae, 2, 35–54.

Zhang, Z., Fan, J., Wu, J., Zhang, L., Wang, J., Zhang, B., & Wang-Pruski, G. (2020). Alleviating effect of silicon on melon seed germination under autotoxicity stress. Ecotoxicology and environmental safety, 188, 109901




DOI: http://dx.doi.org/10.33448/rsd-v9i5.3146

Refbacks

  • There are currently no refbacks.


Base de Dados e Indexadores: Base, Diadorim, Sumarios.org, DOI Crossref, Dialnet, Scholar Google, Redib, Doaj, Latindex, Portal de Periódicos CAPES

Research, Society and Development - ISSN 2525-3409

Licença Creative Commons
Este obra está licenciado com uma Licença Creative Commons Atribuição 4.0 Internacional

Rua Irmã Ivone Drumond, 200 - Distrito Industrial II, Itabira - MG, 35903-087 (Brasil) 
E-mail: rsd.articles@gmail.com