Bibliometric analysis on pyrolysis of banana plantation wastes

Drielly Mazzarim Bernades, Thiago Padovani Xavier, Rodrigo Randow de Freitas, Taisa Shimosakai de Lira


With the economic and population growth of certain nations, the need for energy sources has increased, and the fact that the world is dependent on fossil fuels is quite worrying, since they have finite and potentially polluting characteristics. These conditions encourage the growing search for renewable and “clean” sources to help supply the world's energy demand. Thus, many studies focus on the processes of converting agro-industrial waste, a big challenge in the proper destination when considering the huge amount of debris generated. Among these processes, thermochemical conversion through pyrolysis stands out. In order to perform the statistical survey through the bibliometric approach about the pyrolysis of banana residues, this work was built through Scopus and Web of Science databases, focusing on the use of these residues as biomass for energy generation. As a result, the notable growth of studies over the years regarding the use of pyrolysis as a waste conversion process was evidenced. It was concluded that the potential use of banana crop residues as biomass for production of alternative energy sources is highlighted in research conducted in countries that are considered the world's largest fruit producers.


Energy; Renewable source; Banana; Energetic Matrix.


Abnisa, F., Wan Daud, W. M. A., Ramalingam, S., Azemi, M. N. B. M. & Sahu, J. N. (2013). Co-pyrolysis of palm shell and polystyrene waste mixtures to synthesis liquid fuel. Fuel, 108, 311-318. doi: 10.1016/j.fuel.2013.02.013

Alwani, M. S., Abdul Khalil, H.P.S., Sulaiman, O., Islam, N., & Dungani, R. (2014). An approach to using agricultural waste fibres in biocomposites application: Thermogravimetric analysis and activation energy study. Bioresources, 09 (1), 218-230. Retrieved from

Bilba, K., Arsene, M.-A. & Ouensanga, A. (2007). Study of banana and coconut fibers. Botanical composition, thermal degradation and textural observations. Bioresource Technology, 98 (1), 58-68. doi: 10.1016/j.biortech.2005.11.030

Bridgwater, A.V. (2012). Review of fast pyrolysis of biomass and product upgrading. Biomass and Bioenergy, 38, 68-94. doi:10.1016/j.biombioe.2011.01.048

Bridgwater, T. (2006). Biomass for energy. Journal of the Science of Food and Agriculture, 86 (12), 1755-1768. doi: 10.1002/jsfa.2605

Dhyani, V. & Bhaskar, T. (2019). Biofuels: Alternative Feedstocks and Conversion Processes for the Production of Liquid and Gaseous Biofuels (Second Edition). Biomass, Biofuels, Biochemicals, 217-244. doi:10.1016/B978-0-12-816856-1.00009-9

EPE – Empresa de Pesquisa Energética. (2019). Balanço Energético Nacional 2019: ano base 2018. Retrieved Jul 8, 2019, fromório%20S%C3%ADntese%20BEN%202019-ab%202018.pdf

FAO - Food and Agriculture Organization of the United Nations. (2015). Food wastage footprint: impacts on natural resources 2013. Retrieved Jun 3, 2019, from

FAO - Food and Agriculture Organization of the United Nations. (2017a). Crop Residues. Retrieved Out 15, 2019, from

FAO - Food and Agriculture Organization of the United Nations. (2017b). World Banana Production. Retrieved Jun 2, 2019, from

Fernandes, E. R. K., Marangoni, C., Souza, O., & Sellin, N. (2013). Thermochemical characterization of banana leaves as a potential energy source. Energy Conversion and Management, 75, 603-608. doi: 10.1016/j.enconman.2013.08.008

Gómez, E. O. (2005). A Tecnologia de Pirólise no Contexto da Produção Moderna de Biocombustívies: Uma Visão Perspectiva. Ambiente Brasil-Ambiente Energia. Retrieved Sep 10, 2019, from

Guillain, M., Fairouz, K., Mar, S. R., Monique, F. & Jacques, L. (2009). Attrition-free pyrolysis to produce bio-oil and char. Bioresource Technology, 100 (23), 6069-6075. doi: 10.1016/j.biortech.2009.06.085

Gumisiriza, R., Hawumba, J. F., Okure, M., & Hensel, O. (2017). Biomass waste-to-energy valorisation technologies: A review case for banana processing in Uganda. Biotechnology for Biofuels, 10 (11), Jan. 3. doi: 10.1186/s13068-016-0689-5

Huber G. W., Iborra S., & Corma A. (2006). Synthesis of Transportation Fuels from Biomass: Chemistry, Catalysts, and Engineering. Chemichal Reviews, 106 (9), 4044−4098. doi: 10.1021/cr068360d

IEA - International Energy Agency. (2016). World Energy Balances. Retrieved Jun 2, 2019, from

Lam, S. S., Liew, R. K., Jusoh, A., Chong, C. T., Ani, F. N., & Chase, H. A. (2016). Progress in waste oil to sustainable energy, with emphasis on pyrolysis techniques. Renewable Sustainable Energy Reviews, 53, 741-753. doi: 10.1016/j.rser.2015.09.005

Lam, S. S., Liew, R. K., Lim, X. Y., Ani, F. N., & Jusoh, A. (2016). Fruit waste as feedstock for recovery by pyrolysis technique. International Biodeterioration and Biodegradation, 113, 325-333. doi: 10.1016/j.ibiod.2016.02.021

Lam, S.S., Russell, A. D., & Chase, H. A. (2010). Pyrolysis using microwave heating: a sustainable process for recycling used car engine oil. Industrial & Engineering Chemistry Research, 49, 10845-10851. doi: 10.1021/ie100458f

Lehmann, J., Rillig, M. C., Thies, J., Masiello, C. A., Hockaday, W. C., & Crowley, D. (2011). Biochar effects on soil biota - A review. Soil Biology and Biochemistry, 43 (9), 1812-1836. doi: 10.1016/j.soilbio.2011.04.022

Ma, F., & Hanna, M. A. (1999). Biodiesel production: A review. Bioresource Technology, 70 (1), 1-15. doi: 10.1016/S0960-8524(99)00025-5

Maia, B. G. O., Oliveira, A. P. N., Oliveira, T. M. N., Marangoni, C., Souza, O., & Sellin, N. (2018). Characterization and production of banana crop and rice processing waste briquettes. Environmental Progress & Sustainable Energy, 37, 1266-1273. doi: 10.1002/ep.12798

Medintz, I. L., Uyeda, H. T., Goldman, E. R., & Mattoussi, H. (2005). Quantum dot bioconjugates for imaging, labelling and sensing. Nature Materials, 4, 435-446. doi: 10.1038/nmat1390

MME - Ministério de Minas e Energia. (2018). World Energy. Retrieved Jun 2, 2019, from;jsessionid=23A29A5505323A1DD0ED0E7D02E956E2.srv155

Mohan, D., Pittman Jr., C. U., & Steele, P. H. (2006). Pyrolysis of wood/biomass for bio-oil: A critical review. Energy and Fuels, 20 (3), 848-889. doi: 10.1021/ef0502397

Murray, C. B., Norris, D. J., & Bawendi, M. G. (1993). Synthesis and Characterization of Nearly Monodisperse CdE (E = S, Se, Te) Semiconductor Nanocrystallites. Journal of the American Chemical Society, 115 (19), 8706-8715. doi: 10.1021/ja00072a025

Nanda, S., Isen, J., Dalai, A. K., & Kozinski, J. A. (2016). Gasification of fruit wastes and agro-food residues in supercritical water. Energy Conversion and Management, 110, 296-306. doi: 10.1016/j.enconman.2015.11.060

Russell, A. D., Antreou, E. I., Lam, S. S., Ludlow-Palafox, C., & Chase, H.A. (2012). Microwave-assisted pyrolysis of HDPE using an activated carbon bed. RSC Advances, 2 (17), 6756-6760. doi: 10.1039/c2ra20859h

Salema, A. A., & Ani, F. N. (2011). Microwave induced pyrolysis of oil palm biomass. Bioresource Technology, 102, 3388-3395. doi: 10.1016/j.biortech.2010.09.115

Scopus. Quick Reference Guide. (2016). Retrieved Jun 2, 2019, fromência%20rápida_10.08.2016.pdf

Sellin, N., Krohl, D. R., Marangoni, C., & Souza, O. (2016). Oxidative fast pyrolysis of banana leaves in fluidized bed reactor. Renewable Energy, 96 (A), 56-64. doi: 10.1016/j.renene.2016.04.032

Shen, Y., & Yoshikawa, K. (2013). Recent progresses in catalytic tar elimination during biomass gasification or pyrolysis – A review. Renewable Sustainable Energy Reviews, 21, 371-392. doi: 10.1016/j.rser.2012.12.062

Stephan, A. M., Kumar, T. P., Ramesh, R., Thomas, S., Jeong, S. K., & Nahm, K. S. (2006). Pyrolitic carbon from biomass precursors as anode materials for lithium batteries. Materials Science and Engineering A, 430, 132-137. doi: 10.1016/j.msea.2006.05.131

UFPR. Web of Science Tutorial. (2009). Retrieved Jun 2, 2019, from

UFRGS. Web of Science Tutorial. (2014). Retrieved Jun 2, 2019, from

Yang, H., Yan, R., Chen, H., Lee, D.H. & Zheng, C. (2007). Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel, 86 (12-13), 1781-1788. doi: 10.1016/j.fuel.2006.12.013

Yang, K., Gao, Q., Tan, Y., Tian, W., Qian, W., Zhu, L., & Yang, C. (2016). Biomass-Derived Porous Carbon with Micropores and Small Mesopores for High-Performance Lithium-Sulfur Batteries. Chemistry - A European Journal, 22, 3239-3244. doi: 10.1002/chem.201504672

Zhou, H., Long, Y., Meng, A. H., Li, Q.H., & Zhang, Y.G. (2015). Classification of municipal solid waste components for thermal conversion in waste-to-energy research. Fuel, 145, 151-157. doi: 10.1016/j.fuel.2014.12.015



  • There are currently no refbacks.

Base de Dados e Indexadores: Base, Diadorim,, DOI Crossref, Dialnet, Scholar Google, Redib, Doaj, Latindex, Redalyc, Portal de Periódicos CAPES

Research, Society and Development - ISSN 2525-3409

Licença Creative Commons
Este obra está licenciado com uma Licença Creative Commons Atribuição 4.0 Internacional

Rua Irmã Ivone Drumond, 200 - Distrito Industrial II, Itabira - MG, 35903-087 (Brasil)