Evaluation Degradation of Bioactive Compounds of Fruit Physalis (P. peruviana) During the Drying Process

Newton Carlos Santos, Sâmela Leal Barros, Raphael Lucas Jacinto Almeida, Shênia Santos Monteiro, Amanda Priscila Silva Nascimento, Virgínia Mirtes de Alcântara Silva, Josivanda Palmeira Gomes, Márcia Ramos Luiz, Danise Medeiros Vieira

Abstract


The objective of this study was to perform the drying kinetics of fruit physalis, verifying the fit of the empirical mathematical models to the experimental data obtained and to evaluate the influence of the different temperatures used in the process in relation to its centesimal composition and bioactive compounds. Drying kinetics were performed using a fixed air velocity convective dryer (1.5 m.s-1) and temperature ranging from 40 to 70 °C. In fresh and dehydrated fruits, moisture content, ash, lipids, protein, total carbohydrates, anthocyanins, flavonoids, total carotenoids, total phenolic compounds and antioxidant activity (ABTS+ and DPPH) were determined. Among the studied mathematical models, the Silva et ali. model presented the best fit to the experimental data, with coefficient of determination (R2> 0.99) and chi-square values (<0.003753), being considered as most efficient in describing the physalis drying process. From the obtained data it was verified that the increase of the temperature causes reduction in the moisture, ash and lipid content, also causing the greatest degradation of all bioactive compounds analyzed (anthocyanins, flavonoids, total carotenoids, phenolic compounds) and antioxidant activity. However, temperatures of 40 and 50 °C provided better preservation of all bioactive components and antioxidant activity when compared to the values obtained for the fresh fruit.


Keywords


Antioxidant activity; Conservation; Exotic fruit.

References


Avhad, M. R., & Marchetti, J. M. (2016). Mathematical modelling of the drying kinetics of Hass avocado seeds. Industrial Crops and Products, 91, 76–87. Doi:10.1016/j.indcrop.2016.06.035

Barros, S. L., Santos, N. C., Nascimento, A. P. S., Melo, M. O. P., Ribeiro, V. H. A., & Silva, V. M. A. (2019). Influence of Dehydration in the Physical-Chemical Quality of Commercial Sunflower Almonds. Journal of Agricultural Studies, 7(3), 82-90.

Bevington, P. R., & Robinson, D. K. (1992). Data reduction and error analysis for the physical sciences, 2nd ed. Boston, MA: WCB/McGraw-Hill.

Bligh, E. G., & Dyer, W. J. (1959). A rapid method of total lipid extraction and purification. Canadian Journal Biochemistry Physiology, 37, 911-917. Doi: 10.1139/y59-099

Brasil, Instituto Adolfo Lutz. (2008). Métodos físico-químicos para análise de alimentos (4th ed., Volume 1, p.1020). São Paulo: Instituto Adolfo Lutz.

Cárcamo-Medina, L., Elezar-Turcios, M., & Ordóñez-Santos, L. E. (2019). Changes in the bioactive compounds of pasteurized gooseberry (Physalis peruviana L.) juice. TecnoLógicas, 22(45), 147-155. Doi: 10.22430/22565337.1279

Chang, J. C., Lin, C. C., Wu, S. J., Lin, D. L., Wang, W. S., Miaw, C. L., & Ng, L. T. (2008). Antioxidative and hepatoprotective effects of Physalis peruviana extract against acetaminophen-induced liver injury in rats. Pharmaceutical biology, 46(10-11), 724-731. Doi: 10.1080/13880200802215768

Curi, P. N., Carvalho, C. S., Salgado, D. L., Pio, R., Silva, D. F., Pinheiro, A. C. M., & Souza, V. R. (2017). Characterization of different native american physalis species and evaluation of their processing potential as jelly in combination with brie-type cheese. Food Science and Technology, 38(1), 112–119. Doi:10.1590/1678-457x.01317

Da Silva, W. P., Mata, M. E. R. M. C., Silva, C. D. P. S., Guedes, M. A., & Lima, A. G. B. (2008). Comportamento da secagem de grãos de feijão macassar (Vigna unguiculata (L.) Walp.) variedade sempre-verde, como base para a determinação da difusividade efetiva e energia de ativação. Engenharia Agrícola, 28(2), 325–333. Doi: 10.1590/S0100-69162008000200013

Davies, B. H. (1976). Carotenoids in Chemistry and Biochemistry of plant Pigments. 2nd ed. Edt. W. Gooodwin. p. 38-165. Academic Press, London. 1976.

El-Beltagi, H. S., Mohamed, H. I., Safwat, G., Gamal, M., & Megahed, B. M. (2019). Chemical Composition and Biological Activity of Physalis peruviana L. Gesunde Pflanzen, 71(2), 113-122. Doi: 10.1007/s10343-019-00456-8

FAO. Food and Agriculture Organization of the United Nations. Food Energy: Methods of Analysis and Conversion Factors. Report of a Technical Workshop; Food and Nutrition Paper Volume 77; FAO: Rome, Italy, 2003.

Fennema, O. R., Damodaran, S., & Parkin, K. L. (2010). Química de Alimentos de Fennema. Editorial Acribia, Espanha, 1258p.

Ferrão, A. C., Guiné, R. P. F., Corrêia, T., & Rodrigues, R. (2019). Analysis of drying kinetics of eggplant through thin layer models and evaluation of texture and calour properties. Chemistry Research Journal, 4(1), 24-32.

Francis, F. J. (1982). Analysis of anthocyanins in foods. In: Markakis P, Anthocyanins as Food Colors. New York, Academic Press, 181-207.

Hassanien, M. F. R. (2011). Physalis peruviana: a rich source of bioactive phytochemicals for functional foods and pharmaceuticals. Food Reviews International, 27(3), 259-273. Doi: 10.1080/87559129.2011.563391

Hemalatha, R., Kumar, A., Prakash, O., Supriya, A., Chauhan, A., & Kudachikar, V. (2018). Development and Quality Evaluation of Ready to Serve (RTS) Beverage from Cape Gooseberry (Physalis peruviana L.). Beverages, 4(2), 42. Doi: 10.3390/beverages4020042

Landim, A. P. M., Barbosa, M. I. M. J., & Júnior, J. L. B. (2016). Influence of osmotic dehydration on bioactive compounds, antioxidante capacity, color and texture of fruits and vegetables: a review. Ciência Rural, 46(10), 1714-1722. Doi: 10.1590/0103-8478cr20150534

Licodiedoff, S., Koslowski, L. A. D., & Ribani, R. H. (2013a). Flavonol rates of gosseberry fruits Physalis peruviana determined by HPLC through the optimization and validation of the analytic method. Int. J. Food Sci. Nutr. Eng, 3,1-6. Doi: 10.5923/j.food.20130301.01

Licodiedoff, S., KoslowskI, L. A. D., & Ribani, R. H. (2013b). Flavonols and antioxidant activity of Physalis peruviana L. fruit at two maturity stages. Acta Scientiarum. Technology, 35(2), 393-399. Doi: 10.4025/actascitechnol.v35i2.13265

López, J., Vega-Gálvez, A., Torres, M. J., Lemus-Mondaca, R., Quispe-Fuentes, I., & Scala, K. (2013). Effect of dehydration temperature on physico-chemical properties and antioxidant capacity of goldenberry (Physalis peruviana L.). Chilean journal of agricultural research, 73(3), 293-300. Doi:10.4067/S0718-58392013000300013

Machado, T. F., Monteiro, E. R., & Tiecher, A. (2019). Estabilidade química, físico-química e antioxidante de polpa de Physalis pasteurizada e não pasteurizada sob congelamento. Brazilian Journal of Food Technology, 22, Doi:10.1590/1981-6723.14917

Martins, E. A. S., Lage, E. Z., Goneli, A. L. D., Hartmann Filho, C. P., & Lopes, J. G. (2015). Cinética de secagem de folhas de timbó (Serjania marginata Casar). Revista Brasileira de Engenharia Agrícola e Ambiental, 19(3), 238–244. Doi:10.1590/1807-1929/agriambi.v19n3p238-244

Mattiuz, B. H. (2007). Fatores da pré-colheita influenciam a qualidade final dos produtos. Revista Visão Agrícola, 7, 18-21.

Meneses, V. P., Da Silva, J. R. A., Neto, J. F., Rolim, H. O., De Araújo, A. L. M., & Lima, P. S. E. (2018). Subprodutos de frutas tropicais desidratados por secagem convectiva. Revista Verde de Agroecologia e Desenvolvimento Sustentável, 13(4), 472-482. Doi: 10.18378/rvads.v12i4.4993

Moscon, E. S., Martin, S., Spehar, C. R., Devilla, I. A., & Rodolfo Junior, R. (2017). Cinética de secagem de grãos de quinoa (chenopodium quinoa w.). Revista Engenharia na Agricultura, 25(4), 318-325.

Muniz, J., Molina, A. R., & Muniz, J. (2015). Physalis: Panorama produtivo e econômico no Brasil. Horticultura Brasileira, 33(2). Doi:10.1590/S0102-053620150000200023

Nabnean, S., Thepa, S., Janjai, S., & Bala, B. K. (2016). Drying kinetics and diffusivity of osmotically dehydrated cherry tomatoes. Journal of Food Processing and Preservation, 41(1), 1-11. Doi:10.1111/jfpp.12735

Olivares, M. L. T., Verkerk, R., Boekel, M. A. J. S., & Dekker, M. (2017). Thermal stability of phytochemicals, HMF and antioxidant activity in cape gooseberry (Physalis peruviana L.). Journal of Functional Foods, 32, 46–57. Doi: 10.1016/j.jff.2017.02.021

Pereda, M. S. B., Nazareno, M. A., & Viturro, C. I. (2019). Nutritional and antioxidant properties of Physalis peruviana L. fruits from the Argentinean northern Andean region. Plant Foods for Human Nutrition, 74(1), 68-75, 2019. Doi: 10.1007/s11130-018-0702-1

Puente, L. A., Pinto-Muñoz, C. A., Castro, E. S., & Cortés, M. (2011). Physalis peruviana Linnaeus, the multiple properties of a highly functional fruit: A review. Food Research International, 44(7), 1733-1740. Doi: 10.1016/j.foodres.2010.09.034

Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26,1231-1237.

Rufino, M. S. M., Alves, R. E., Brito, E. S., Morais, S. M., Sampaio, C. G., Jimenez, J. P., & Calixto, F. D. S. (2007). Determinação da atividade antioxidante total em frutas pela captura do radical livre DPPH. Comunicado Técnico Embrapa, 127, 1-4.

Rufino, M. S. M., Alves, R. E., Brito, E. S., Morais, S. M., Sampaio, C. G., Jimenez, J. P., & Calixto, F. D. S. (2007). Determinação da atividade antioxidante total em frutas pela captura do radical livre DPPH. Comunicado Técnico Embrapa, 127, 1-4.

Santos, K. S., Flores, E. M., & Malcher, E. T. (2017). Caracterização química e atividade antioxidante (in vitro) do fruto do camapú (Physalis peruviana, L.). Revista Ciência e Sociedade, 1(2), 89-102.

Santos, N. C. et al. (2019). Kinetics of Drying and Physical-Chemical Quality of Peach cv. Hubimel. Journal of Agricultural Science, 11(16), 223-232.

Silva, D. F. D., Pio, R., Soares, J. D. R., Elias, H. H. D. S., Villa, F., Boas, V., & de Barros, E. V. (2016). Light spectrum on the quality of fruits of physalis species in subtropical area. Bragantia, 75(3), 371-376. Doi: 10.1590/1678-4499.463

Silva, F. A. S., & Azevedo, C. A. V. (2016). The Assistat Software Version 7.7 and its use in the analysis of experimental data. African Journal Agricultural Research, 11, 3733-3740. Doi: 10.5897/AJAR 2016.11522

Silva, M. B., Perez, V. H., Pereira, N. R., Silveira, T. C., Silva, N. R. F., Andrade, C. M., & Sampaio, R. M. (2018). Drying kinetic of tucum fruits (Astrocaryum aculeatum Meyer): physicochemical and functional properties characterization. Journal of Food Science Technology, 55(5), 1656–1666. Doi: 10.1007/s13197-018-3077-2

Silva, W. P. & Silva, C. M. D. P. S. LAB Fit Curve Fitting Software (Nonlinear Regression and Treatment of Data Program) V 7.2.50 (2008), online, disponível em: , Acesso em: 2019-Junho-28.

Silva, W. P., Silva, C. M. D. P. S., Gama, F. J. A., & Gomes, J. P. (2014). Mathematical models to describe thin-layer drying and to determine drying rate of whole bananas. Journal of the Saudi Society of Agricultural Sciences, 13, 67-74. Doi: 10.1016/j.jssas.2013.01.003

Souza, C. L. M., Souza, M. O., Oliveira, R. S., Nascimento, M. N., & Pelacani, C. R. (2017). Biometric characteristics of fruits and physiological characterization of seeds of Physalis species (Solanaceae). Revista Brasileira de Ciências Agrárias, 12(3), 277-282. Doi:10.5039/agraria.v12i3a5447

Taylor, J. R. (1997). An introduction to error analysis, 2nd ed. Sausalito, California: University Science Books.

Teixeira Júri, B. et al. (2016). Avaliação do teor de polifenóis totais e da capacidade antioxidante dos extratos etanólicos dos frutos de aguaymanto (Physalis peruviana L.) de diferentes locais do Peru. Jornal da Sociedade Química do Peru, 82(3), 272-279.

Valdenegro, M., Fuentes, L., Herrera, R., & Moya-León, M. A. (2012). Changes in antioxidant capacity during development and ripening of goldenberry (Physalis peruviana L.) fruit and in response to 1-methylcyclopropene treatment. Postharvest Biology and Technology, 67, 110-117. Doi:10.1016/j.postharvbio.2011.12.021

Vega-Gálvez, A., Puente-Díaz, L., Lemus-Mondaca, R., Miranda, M., & Torres, M. J. (2012). Mathematical modeling of thin-layer drying kinetics of cape gooseberry (Physalis peruviana L.). Journal of Food Processing and Preservation, 38(2), 728–736. Doi:10.1111/jfpp.12024

Waterhouse, A. (2006). Folin-ciocalteau micro method for total phenol in wine. American Journal of Enology and Viticulture, 3-5.




DOI: http://dx.doi.org/10.33448/rsd-v9i1.1678

Refbacks

  • There are currently no refbacks.


Base de Dados e Indexadores: Base, Diadorim, Sumarios.org, DOI Crossref, Dialnet, Scholar Google, Redib, Doaj, Latindex, Redalyc, Portal de Periódicos CAPES

Research, Society and Development - ISSN 2525-3409

Licença Creative Commons
Este obra está licenciado com uma Licença Creative Commons Atribuição 4.0 Internacional

Rua Irmã Ivone Drumond, 200 - Distrito Industrial II, Itabira - MG, 35903-087 (Brasil) 
E-mail: rsd.articles@gmail.com
Facebook: https://www.facebook.com/Research-Society-and-Development-563420457493356