Evaluation of the Viability of Implementation of Renewable Hybrid Systems for Energy Access in the Amazon Region

Bárbara Zon Nascimento, Thais Caliman Catelan, Gisele de Lorena Diniz Chaves, Wanderley Cardoso Celeste

Abstract


The Amazon Region is characterized by having a dense and heterogeneous forest, large and extensive rivers, which the access to electricity is difficult, for this reason, is insered in the Isolated System (SI). The SI is composed by smaller systems not connected to the National Interconnected System (SIN), which the costs of interconnections are not feasible. In the current scenario, renewable energy sources are attracting a large number of researchers due to the growing scarcity of fossil fuels. One of the alternatives that have been studied to facilitate the supply of energy in these localities is the use of hybrid renewable energy systems (SH). Thus, the present study aims to evaluate the potential of renewable SH in the Amazon Region. For this, a comparative table of the types of renewable energy with potential use in SH and a SWOT Matrix was elaborated through a bibliographic review. From the analysis developed, it was noticed that there are a significant number of positive points that combined with governmental incentive policies of tax and credit can make feasible the implementation of hybrids of renewable energy.


Keywords


Isolated System; Amazon; Renewable Energy; Hybrids System.

References


Abbaspour, M., Satkin, M., Mohammadi-Ivatloo, B., Lotfi, F. H., & Noorollahi, Y. (2013). Optimal operation scheduling of wind power integrated with compressed air energy storage (CAES). Renewable Energy, 51 (1), 53-59.

Agarwal, R. K., Hussain, I., & Singh, B. (2016). LMF-based control algorithm for singlestage three-phase grid integrated solar PV system. IEEE Transactions Sustainable Energy, 4 (7), 1379–1387.

Ávila-Prats D., Alesanco-García, R., & Veliz-Alonso, J. (2011). Sistemas híbridos con base en las energías renovables para el suministro de energía a plantas desaladoras. Ingeniería Mecánica, 14 (1), 22-30.

Bacellar, A. A., & Rocha, B. R. P. (2010). Wood-fuel biomass from the Madeira River: A sustainable option for electricity production in the Amazon Region. Energy Policy, 38 (1), 5004–5012.

Barbosa, B. S., Koolen, H. H. F., Barreto, A. C., Silva, J. D., Figliulo, R., & Nunomura, S. M. (2009). Aproveitamento do Óleo das Amêndoas de Tucumã do Amazonas na Produção de Biodiesel. Acta Amazonica, 39 (2), 371-376.

Beluco, A., Souza, P. K., & Krenzinger, A. (2008). PV hydro hybrid systems. IEEE Latin American Transactions, 6 (7), 626-631.

Bouzelata, Y., Altin, N., Chenni, R., & Kurt, E. (2016). Exploration of optimal design and performance of a hybrid wind-solar energy system. Internation Journal of Hydrogen Energy, 41 (1), 12497-12511.

Claudiado, V. C., Emilio, L. R., & Assmann, D. (2008). Technological innovation policies to promote renewable energies: Lessons from the European experience for the Brazilian case. Renewable and Sustainable Energy Reviews, 12 (1), 65-90.

Coelho, S. T., & Goldemberg, J. (2013). Energy access: Lessons learned in Brazil and perspectives for replication in other developing countries. Energy Policy, 61 (1), 1088-1096.

ELETROBRÁS. (2016). Informe de Mercado. Recuperado em 20 maio, 2018, de http://eletrobras.com/pt/AreasdeAtuacao/geracao/sistemas_isolados_mercado/informe%20de%20mercado/2016/2%C2%B0_Semestre_2016.pdf.

Els, R. H., Vianna, J. N. S., & Brasil, A. C. P. Jr. (2012). The Brazilian experience of rural electrification in the Amazon with decentralized generation – The need to change the paradigm from electrification to development. Renewable and Sustainable Energy Reviews, 16 (3), 1450-1461.

Gómez, M. F., & Silveira, S. (2015). The last mile in the Brazilian Amazon – A potential pathway for universal electricity access. Energy Policy, 82 (1), 23–37.

Guedes, A., Braga, S. L., & Pradelle, F. (2018). Performance and combustion characteristics of a compression ignition engine running on diesel-biodiesel-ethanol (DBE) blends – Part 2: Optimization of injection timing. Fuel, 225 (1), 174-183.

Guerra, J. B. S. O. A., Dutra, L., Schwinden, N. B. C., & Andrade, S. F. (2015). Future scenarios and trends in energy generation in brazil: supply and demand and mitigation forecasts. Journal of Cleaner Production, 103 (1), 197-210.

IBGE - Instituto Brasileiro de Geografia e Estatística. (2010). Censo 2010. Recuperado em 18 maio, 2018, de http://censo2010.ibge.gov.br/.

Itai, Y., Santos, R., Branquinho, M., Malico, I., Ghesti, G. F., & Brasil, A. M. (2014). Numerical and experimental assessment of a downdraft gasifier for electric power in Amazon using açaí seed (Euterpe oleracea Mart.) as a fuel. Renewable Energy, 66 (1), 662-669.

Kalagirou, S. A. (2001). Use of TRNSYS for modelling and simulation of a hybrid pv-thermal solar system for Cyprus. Renewable Energy, 23 (2), 247-260.

Kiray, V., & Sagbansua, L. (2013). Barriers in front of solar energy plants in Turkey and investment analysis of solution scenarios-case study on a 10 MW system. Journal of Renewable and Sustainable Energy, 5 (4), 1-14.

Kobayashi, N., & Fan, L. (2011). Biomass direct chemical looping process: A perspective. Biomass and Bioenergy, 35 (1), 1252-1262.

Kolhe, M. L., Ranaweera, K. I. U., & Gunawardana, A. S. (2015). Techno-economic sizing of off-grid hybrid renewable energy system for rural electrification in Sri Lanka. Sustainable Energy Technologies and Assessments, 11 (1), 53-64.

Lago Neto, J. C. L., Costa Jr., C. T. C., Bitar, S. D. B., & Barra Jr., W. B. (2011). Forecasting of energy and diesel consumption and the cost of energy production in isolated electrical systems in the Amazon using a fuzzification process in time series model. Energy Policy, 39 (1), 4947-4955.

Li, G., Zhu, R., & Yang, Y. (2012). Polymer solar cells. Nature Photonics, 6 (1), 153-161.

Macedo, W. N., Monteiro, L. G., Corgozinho, I. V., Macêdo, E. N., Rendeiro, G., Braga, W., & Bacha, L. (2016). Biomass based microturbine system for electricity generation for isolated communities in amazon region. Renewable Energy, 91 (1), 323-333.

Makhija, S. P., & Dubey, S. P. (2018). Feasibility of PV–biodiesel hybrid energy system for a cement technology institute in India. Environment, Development and Sustainability, 20 (1), 377–387.

Matos, F. B., Camacho, J. R., Rodrigues, P., & Guimarães, S. C. (2011). A research on the use of energy resources in the Amazon. Renewable and Sustainable Energy Reviews, 15 (1), 3196– 3206.

Miguel, F. K., & Ramos, D. S. (2017). Analysis of PROINFA Power Plants Portfolio from the Perspective of Markowitz. IEEE Latin America Transactions, 15 (9), 1650-1656.

MME – Ministério de Minas e Energia. (2008). Sistemas híbridos. Recuperado em 04 abril, 2018, de https://www.mme.gov.br/luzparatodos/downloads/Solucoes_Energeticas_para_a_ Amazonia_Hibrido.pdf.

Nerini, F. F., Howels, M., Bazilian, M., & Gómez, M. F. (2014). Rural electrification options in the Brazilian Amazon – a multi-criteria analysis. Energy for Sustainable Development, 20 (1), 36-48.

ONS - Operador Nacional do Sistema Elétrico. (2017). Plano Anual de Operação dos Sistemas Isolados para 2018. Recuperado em 03 abril, 2018, de http://www.ons.org.br/ AcervoDigitalDocumentosEPublicacoes/ONS_RE-3-0138-2017_PEN_SISOL_2018.pdf.

ONU. (2016). Organização das Nações Unidas. Recuperado em 18 maio, 2018, de https://nacoesunidas.org/banco-mundial-12-bilhao-de-pessoas-ainda-vivem-sem-eletricidade-e-663-milhoes-sem-agua-potavel/.

Pablo-Romero, M. D. P. (2013). Solar Energy: Incentives to Promote PV in EU27. AIMS Energy, 1 (1), 28-47.

Paschalidou, A., Tsatiris, M., & Kitikidou, K. (2016). Energy crops for biofuel production or for food? - SWOT analysis (case study: Greece). Renewable Energy, 93 (1), 636-647.

Pereira, M. G., Freitas, M. A. V., & Silva, N. F. (2010). Rural electrification and energy poverty: empirical evidences from Brazil. Renewable and Sustainable Energy Reviews, 14 (1), 1229-1240.

Prado, F. A., Athayde, S., Mossa, J., Bohlman, S., Leite, F., & Oliver-Smith, A. (2016). How much is enough? An integrated examination of energy security, economic growth and climate change related to hydropower expansion in Brazil. Renewable and Sustainable Energy Reviews, 53 (1), 1132–1136.

Pronobis, M. (2005). Evaluation of the influence of biomass co-combustion on boiler furnace slagging by means of fusibility correlations. Biomass Bioenergy, 28 (4), 375-383.

Roberts, J. J., Cassula, A. M., Silveira, J. L., Bortoni, E. C., & Mendiburu, A. Z. (2018). Robust multi-objective optimization of a renewable based hybrid power system. Applied Energy, 223 (1), 52-68.

Salameh, J. P., Cauet, S., Etien, E., Sakout, A., & Rambault, L. (2018). Gearbox condition monitoring in wind turbines: A review. Mechanical Systems and Signal Processing, 111 (1), 251-264.

Shaik, A. G., & Mahela, O. P. (2018). Power quality assessment and event detection in hybrid power system. Electric Power Systems Research, 161 (1), 26-44.

Siddaiah R., & Saini, R. P. (2016). A review on planning, configurations, modeling and optimization techniques of hybrid renewable energy systems for off-grid applications. Renewable and Sustainable Energy Reviews, 58 (1), 376-96.

Silva, R. C., Marchi Neto, I., & Seifert, S. S. (2016). Electricity supply security and the future role of renewable energy sources in Brazil. Renewable and Sustainable Energy Reviews, 59 (1), 328-341.

Soedibyo, Suryoatmojo, H., Robandi, I., & Ashari, M. (2012). Optimal Design of Fuel-cell, Wind and Micro-hydro Hybrid System using Genetic Algorithm. Telkomnika, 10 (4), 695-702.

Toklu, E. (2017). Biomass energy potential and utilization in Turkey. Renewable Energy, 107 (1), 235-244.

Vasu, A., Hagos, F. Y., Noor, M. M., Mamat, R., Azmi, W. H., Abdullah, A. A., & Ibrahim, T. K. (2017). Corrosion effect of phase change materials in solar thermal energy storage application. Renewable and Sustainable. Energy Reviews, 76 (1), 19-33.

Yu, H., Duan, J., Du, W., Xue, S., & Sun, J. (2017). China's energy storage industry: develop status, existing problems and countermeasures. Renewable and Sustainable Energy Reviews, 71 (1), 767-784.

Zhang, K. H., Zhang, K., Cao, Y., & Pan, W. P. (2013). Co-combustion characteristics and blending optimization of tobacco stem and high-sulfur bituminous coal based on thermogravimetric and mass spectrometry analyses. Bioresource Technology, 131 (1), 325-332.

Zhou, C., Liu, G., Wang, X., & Qi, C. (2016). Co-combustion of bituminous coal and biomass fuel blends: Thermochemical characterization, potential utilization and environmental advantage. Bioresource Technology, 218 (1), 418-427.




DOI: http://dx.doi.org/10.33448/rsd-v8i10.1415

Refbacks

  • There are currently no refbacks.


Base de Dados e Indexadores: Base, Diadorim, Sumarios.org, DOI Crossref, Dialnet, Scholar Google, Redib, Doaj, Latindex, Redalyc, Portal de Periódicos CAPES

Research, Society and Development - ISSN 2525-3409

Licença Creative Commons
Este obra está licenciado com uma Licença Creative Commons Atribuição 4.0 Internacional

Rua Irmã Ivone Drumond, 200 - Distrito Industrial II, Itabira - MG, 35903-087 (Brasil) 
E-mail: rsd.articles@gmail.com
Facebook: https://www.facebook.com/Research-Society-and-Development-563420457493356