An investigation with teachers in initial training on: sequence of lucas and the numbers of k-Lucas

Ana Maria Silva Guedes, Francisco Régis Vieira Alves

Abstract


This work consists of exposing results on the sequence of Lucas and the numbers of k-Lucas as well as the contributions of the French mathematician Édouard Anatole Lucas from a study carried out with students of the discipline of the history of mathematics of the licentiate course in mathematics of the Institute Federal Education Science and Technology of the State of Ceará -IFCE. In order to identify and explore some specific properties of Lucas k-number, the teaching methodology used in the meetings was the didactic situations theory (TSD) and as a research methodology the didactic engineering (ED) phases. The data collected present some properties, as well as mathematical definitions developed by the initial training teachers participating in the study, which added in their professional practices a historical knowledge.


Keywords


Teaching mathematics; didactic situations; sequences.

References


ALVES, Francisco, R. V.(2015) Sequência Generalizada de Fibonacci e relações com o número áureo. In: Boletim Cearense de Educação e História da Matemática, v. 2, nº 6, pp. 26 – 3 .Disponível em: http://seer.uece.br/?journal=BOCEHM&page=issue&op=archive

ARTIGUE, M. (1988): “IngénierieDidactique”. Recherchesen Didactiquedes Mathématiques. Grenoble: La PenséeSauvage-Éditions, v. 9.3, 281-308.

Astroline e silva, Bruno.(2017) Números de Fibonacci e número de Lucas/ orientador Miguel V. S. frasson. -- São Carlos, 81p. disponível em: http://www.teses.usp.br/teses/disponiveis/55/55136/tde-03032017-143706/pt-br.php

Barik Biswajit.(2013) Lucas sequence, its proporties and generalizations. Departament of mathematics. National institute of technology Rourkela Odisha- 768009. May.

Brousseau, G.(2008) Introdução ao estudo das situações didáticas: conteúdos e métodos de ensino. Tradução de Camila Bogéa. São Paulo: Ática.

Gil, Antonio Carlos.(2008). Métodos e técnicas de pesquisa social. 6. ed. São Paulo: Atlas.

HOGGAT, Jr. V. E. & VENNER, E. (1969). Fibonacci and Lucas Numbers. Santa Clara: Fibonacci Association Publishers.

KOSHY. T. (2011). Fibonacci and Lucas Numbers and Applications. New York: John Willey and Sons.

MIGUEL, A.; BRITO, A. J.(1996). A história da matemática na formação do professor de matemática. Campinas: Papirus.

Santos, Arlem Atanazio dos. (2017). Engenharia didática sobre o estudo e ensino da fórmula de Binet como modelo de generalização e extensão da sequência de Fibonacci/ Dissertação de mestrado Arlem Atanazio dos Santos- Fortaleza: IFCE.




DOI: http://dx.doi.org/10.33448/rsd-v8i7.1136

Refbacks

  • There are currently no refbacks.


Base de Dados e Indexadores: Base, Diadorim, Sumarios.org, DOI Crossref, Dialnet, Scholar Google, Redib, Doaj, Latindex, Redalyc, Portal de Periódicos CAPES

Research, Society and Development - ISSN 2525-3409

Licença Creative Commons
Este obra está licenciado com uma Licença Creative Commons Atribuição 4.0 Internacional

Rua Irmã Ivone Drumond, 200 - Distrito Industrial II, Itabira - MG, 35903-087 (Brasil) 
E-mail: rsd.articles@gmail.com
Facebook: https://www.facebook.com/Research-Society-and-Development-563420457493356